

Journal of Molecular Structure (Theochem) 499 (2000) 241-255

www.elsevier.nl/locate/theochem

DFT studies of structures and vibrational spectra of silicon-sulfur clusters $(SiS_2)_n^+$ (n = 1-5)

Su-Fan Wang^a, Ji-Kang Feng^{a,*}, Kun-Qian Yu^a, Meng Cui^a, Ai-Min Ren^a, Chia-Chung Sun^a, Peng Liu^b, Zhen Gao^b, Fan-Aao Kong^b

^aState Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, People's Republic of China

^bState Key Laboratory of Molecular Dynamics, Institute of Chemistry, Chinese Academy of Science, Beijing 100080, People's Republic of China

Received 9 April 1999; accepted 23 August 1999

Abstract

The possible geometrical structures and relative stabilities of silicon–sulfur clusters $(SiS_2)_n^+$ (n = 1-5) are explored by means of DFT quantum chemical calculations. The effects of polarization functions and electron correlation are included in these calculations. The electronic structure and vibrational spectra of the most stable geometrical structures on each $(SiS_2)_n^+$ potential energy surface are analyzed by the same method. As the result, the regularity of the $(SiS_2)_n^+$ cluster forming is obtained that is the most stable structure of SiS_2^+ is with $D_{\infty h}$ symmetry, and $(SiS_2)_n^+$ (n = 2-5) have tetra-atomic rings of Si and S atoms bound alternatively, and the rings are perpendicular to each other. The calculation may predict the mechanism of the $(SiS_2)_n^+$ cluster forming is based on the bonding of Si and S atoms with SiS_2^+ as the core and SiS_2 as the building block, forming tetratomic ring molecular chain with rings perpendicular to each other. © 2000 Elsevier Science B.V. All rights reserved.

Keywords: Silicon-sulfur clusters; Geometry; Electronic structure; Vibrational spectra

1. Introduction

The theoretical study of clusters is becoming more and more important with new clusters being synthesized continuously. The research of non-metal clusters have developed widely since fullerene was discovered [1-3]. In particular, the observation of silicon and sulfur clusters attracted much attention.

Silicon is one of the most abundant elements on earth. Its importance in science and technology results from its diverse use ranging from glass to catalysis to Si-based microelectronic devices and optical fiber communications. That is why silicon clusters have been the subjects of a series of experimental and theoretical studies during the last ten years. There are many theoretical studies on silicon clusters recently, ab initio calculations of the properties of silicon clusters have been carried out by several investigators. These calculations have proved to be invaluable in understanding the various experiments carried out on silicon clusters. For example, the geometries and vibrational frequencies of neutral silicon clusters up to Si₁₀ were calculated by Raghavachari [4] before any of the above experiments were carried out. This was followed by calculations by Raghavachari and Rohlfing on the geometries and frequencies of negative ions as well as the low-lying excited states for several of the neutral clusters [5]. Moreover, there were many

^{*} Corresponding author. Fax: +86-431-8923907.

^{0166-1280/00/\$ -} see front matter @ 2000 Elsevier Science B.V. All rights reserved. PII: S0166-1280(99)00328-0

Fig. 1. Geometrical structures of different SiS₂⁺ isomers.

theoretical studies on binary clusters containing silicon. For example, Reiko Kishi et al. [6] investigated the geometries and energies of Si_nF^- and Si_nF (n =1-7) with ab initio MO calculations. Cangshan Xu et al. analyzed and assigned to various electronic states of Si_nH and Si_nH^- , the ground state structures of anions and neutrals by ab initio calculations [7]; and Reiko Kishi et al. [8,9] studied the geometric and electronic structures of the mixed clusters Si_nNa, and $\operatorname{Si}_n \operatorname{Na}^-(1 \le n \le 7)$ with ab initio molecular orbital calculations; and Harkless et al. have calculated the 8) using the molecular dynamics simulation [10], Nayak et al. studied the atomic and electronic structures of neutral and charged Si_nO_m clusters using density functional theory [11]. There are a lot of studies on Si-C clusters, such as Si doped in fullerene [12], the vibrational spectra of hexa-atomic siliconcarbon cluster SiC₄Si [13] and so on.

Sulfur has the largest number of allotropes of any element. The study of the geometric and electronic structure of sulfur is very important in investigating properties and their applications. Much attention was paid for sulfur clusters and binary clusters, which contain sulfur. The ground state geometries of sulfur clusters S_2-S_{13} have been calculated by Hohl et al. using a parameter-free density functional (DF) method, combined with molecular dynamics (MD) and simulated annealing techniques [14]. Raghavachari et al. explored the geometric structures and relative stability of small sulfur clusters (S_2-S_{12}) by means of ab initio quantum chemical calculations [15]. The experimental studies of binary clusters containing sulfur have been a focus; many new clusters have been synthesized, such as S-Ag [16,17], S-Au [16,17], S-Co [18], S-Fe [19], S-Ta [20], S-Mn [21], S-V [22] clusters and so on. However, theoretical studies on these clusters are quite limited. However there are many studies on S-C clusters, especially about CS_2 monomer, dimer and $(CS_2)_n$ clusters [23–25].

Recently silicon-sulfur clusters Si_mS_n , anions and cations have been produced by us using direct laser ablation on a solid sample containing a mixture of sulfur and silicon powder, photodissociation of the clusters was studied with a tandem time-of-flight (TOF) mass spectrometer. There are many intense peaks of clusters anions and cations in the mass spectra, such as $(SiS_2)_n^{\pm}$, $[(SiS_2)_nS]^{\pm}$, $[(SiS_2)_nSiS]^{+}$, $[(SiS_2)_nSi_6S]^-$, $[(SiS_2)_nSi_6]^-$, and $(SiS_2)_n^+$ are the most intense peaks of them all. We also studied the mass spectra of their small mass clusters distribution and found that the peaks of $(SiS_2)_n^+$ (n = 1-2) also are the most intense ones. It indicated that $(SiS_2)_n^+$ clusters are the most stable clusters. In this paper we calculate $(SiS_2)_n^+$ (n = 1-5) clusters and predict the mechanism of the $(SiS_2)_n^+$ cluster forming.

2. Computational details

The geometric and electronic structures of $(SiS_2)_n^+$ cluster ions and the harmonic vibrational frequencies of the most stable isomer were studied. The standard three parameter Becke exchange function with the Lee, Yang, and Parr correlation function (DFT/B3LYP) [26–28] and the standard 6-31G^{*} basis set [29–33] available in GAUSSIAN94/DFT have been used.

3. Results and discussions

3.1. SiS₂⁺

 SiS_2^+ is the smallest unit and can be the building block for $(SiS_2)_n^+$ clusters. In Fig. 1, we give the possible geometries of the SiS_2^+ clusters, and we have optimized these structures in order to obtain the lowest

Structure	Symmetry	Bond length (nm)	Overlap population	Mulliken charge	Total energy (a.u.)	Relative energy (eV)	Binding energy (eV)
1	$D_{\infty h}$	Si-S1 0.1968	0.4307	Si 0.5439	-1085.54080	0.0	3.38
				S 0.2280			
2	C_{2v}	Si-S1 0.2060	0.2262	Si 0.7142	-1085.51253	0.77	2.61
				S 0.1429			
3	$C_{\infty y}$	Si-S1 0.2033	0.2778	Si 0.7475	-1085.50633	0.94	2.44
		S1-S2 0.1998	0.0864	S1 -0.0562			
				S2 0.3087			
4	C_{s}	Si-S1 0.2088	0.2314	Si 0.7698	-1085.51150	0.80	2.58

S1 -0.0203 S2 0.2505

Table 1 Bond length, overlap population, Mulliken charge, total, relative and binding energy of SiS_2^+

0.1105

S1-S2 0.2040

Cluster	Symmetry	State	Molecular orbital HOMO LUMO	Orbital energy (eV) HOMO LUMO	Energy gap (eV)	Orbital component HOMO LUMO
SiS_2^+	$D_{\infty h}$	$^{2}\Pi_{g}$	$\pi_{ m g}$	-13.95	1.58	$p_x(\mathbf{S})$
			$\pi^*_{ m g}$	-12.37		$p_y(S)$
$(SiS_2)_2^+$	D_{2h}	${}^{2}\mathbf{B}_{3g}$	b_{2u}	-12.05	1.01	$p_{y}(S3,S4)$
		0	b _{3g}	-11.04		$p_{y}(S3,S4)$
$(SiS_2)_3^+$	D_{2d}		eg	-10.96	0.41	$p_{y}(S5)p_{x}(S6)$
			eu	-10.55		$p_{y}(S5)p_{x}(S6)$
$(SiS_2)_4^+$	D_{2h}	${}^{2}\mathbf{B}_{2u}$	b_{1g}	-10.46	0.36	$p_{v}(S7,S8)$
			b_{2u}	-10.10		$p_{v}(S7,S8)$
$(SiS_2)_5^+$	D_{2d}	${}^{2}A_{2}$	\mathbf{b}_1	-10.44	0.26	$p_{v}(S3,S4)$
_		_	b ₂	-10.18		$p_x(S9)P_y(S10)$

Table 2 Molecular orbitals and orbital energies of $(SiS_2)_n^+$ (n = 1-5)

Table 3 Normal-mode vibrational frequencies (cm^{-1}) of $(\text{SiS}_2)_n^+$ (n = 1-5)

(SiS_2^+)	$D_{\infty h}$	$99/9(\pi_{\rm u})^{\rm a}$	$99/9(\pi_{\rm u})$	$473/0.0(\sigma_{g})$	$596/194(\sigma_u)$	
$(SiS_2)_2^+$	D_{2h}	$49/1(b_{3u})$	$108/4(b_{2u})$	150/0.0(b _{2g})	158/0.0(b _{3g})	
		228/8(b _{3u})	$242/0.0(a_g)$	318/260(b _{1u})	$424/3(b_{3g})$	
		$456/4(a_g)$	508/886(b _{1u})	607/75(b _{2u})	263/0.0(ag)	
$(SiS_2)_3^+$	D_{2d}	34/0(e)	35/0(e)	94/0.0(a)	17/1(e)	
		132/1(e)	162/0.0(a)	174/2(e)	178/2(e)	
		220/4(e)	222/4(e)	272/375(b ₂)	370/0.0(a)	
		393/952(b ₂)	435/0(e)	438/0(e)	450/0.0(a)	
		457/728(b ₂)	604/61(e)	609/72(e)	664/835(b2)	
		730/0.0(a)				
$(SiS_2)_4^+$	D_{2h}	22/0(b _{2u})	25/0(b _{1u})	41/0.0(b _{2g})	68/0.0(a _u)	
		108/0.0(b _{3g})	$111/0.0(b_{1g})$	$122/0.0(a_g)$	137/5(b _{2u})	
		137/0(b _{1u})	171/0.0(b _{1g})	183/0.0(b _{2g})	$211/1(b_{2u})$	
		$216/9(b_{1u})$	228/0.0(b _{2g})	229/46(b _{3u})	$318/0.0(a_g)$	
		354/281(b _{3u})	411/0.0(ag)	$424/0.0(b_{1g})$	$430/414(\dot{b}_{3u})$	
		433/1(b _{2u})	446/0.0(b _{2g})	449/0.0(ag)	459/868(b _{3u})	
		595/51(b _{1u})	596/0.0(ag)	$608/0.0(b_{1g})$	610/145(b _{2u})	
		679/1594(b _{3u})	729/0.0(ag)	U		
$(SiS_2)_5^+$	D_{2d}	14/1(e)	14/1(e)	36/0(e)	36/0(e)	
		57/0.0(b ₁)	$94/0.0(a_1)$	103/0.0(a ₂)	119/1(e)	
		119/(e)	131/0.0(b ₁)	149/2(e)	149/2(e)	
		177/0(e)	177/0(e)	$186/9(b_2)$	203/4(e)	
		203/4(e)	219/2(e)	219/2(e)	264/0.0(a ₁)	
		318/72(b ₂)	$361/0.0(a_1)$	372/309(b ₂)	$403/0.0(a_1)$	
		413/5(e)	413/5(e)	413/29(b ₂)	$432/0.0(a_1)$	
		436/1(e)	436/1(e)	495/47(b ₂)	529/8(e)	
		529/8(e)	544/0.0(a1)	576/180(b ₂)	599/68(e)	
		599/68(e)	787/1307(b ₂)	793/0.0(a1)		

^a Frequency/IR Inten. (symmetry), IR inten. in km/mol.

244

Fig. 2. Geometrical structures of different $(SiS_2)_2^+$ isomers.

energy structure. The parameters such as bond length, overlap population, Mulliken charge, total, relative, binding energy of different isomers are shown in Table 1: (1) is a linear structure with Si as the bridge of two S atoms, the symmetry is $D_{\infty h}$; (2) is a bent structure with Si as the bridge of two S atoms, the symmetry is $C_{2\nu}$; (3) is another linear structure with no Si as the bridge but with two S atoms bound together, the symmetry is $C_{\infty\nu}$; and (4) is yet another bent structure with no Si as the bridge but with two S atoms bound together and the symmetry is C_s . The relative energy order is (1) < (2) < (4) < (3). The Si-S bond length is 0.1968 nm in structure (1), the overlap population is 0.4307, but in other structures, the Si-S bond lengths are all longer than 0.2 nm, and overlap population is less than 0.3. It is said that in the

structure with $D_{\infty h}$ symmetry, the overlap population between Si and S atoms is nearly twice that of other structures, so we predict that in the structure with $D_{\infty h}$ symmetry, the bond between Si and S atoms is a double bond. In the structures with C_s and $C_{\infty v}$ symmetry, the overlap population on bonds S–S is 0.1105 and 0.0864, respectively, so the binding effects are very weak and the bonds are likely to break. We can predict that there is no S–S bond in the stable structures of SiS₂⁺ This prediction can be proved by the study of vibational frequency. Of the structure with $C_{\infty v}$ symmetry, there are imaginary frequencies, so the structure is not a stable structure of SiS₂⁺.

Based on the optimized results, we analyze the electronic structure of the most stable structure of SiS_2^+ with the same method. The parameters are

Structure	Symmetry	Bond length (nm)	Overlap population	Mulliken charge	Total energy (a.u.)	Relative energy (eV)	Binding energy (eV)
1	$D_{2h}(1)$	Si1-S1 0.2135	0.2115	Si1 0.3990	-2171.55956	0.0	19.77
		Si1-S3 0.1978	0.4855	S1 0.0027			
				S3 0.0982			
2	C_{2v}	Si1-Si2 0.2392	0.1283	Si1 0.2931	-2171.50737	1.42	18.35
		Si1-S2 0.2290	0.1056	S2 0.1387			
		Si1-S4 0.1933	0.5475	S4 0.0682			
		S1-S2 0.2026	0.1669				
3	$C_{s}(1)$	Si1-S1 0.2051	0.2175	Si1 0.5652	-2171.48780	1.95	17.82
		Si1-S2 0.2046	0.2222	Si2 0.4421			
		Si1-S3 0.2039	0.3376	S1 0.0465			
		Si2-S3 0.2350	0.0439	S2 0.0636			
		Si2-S4 0.1981	0.4282	S3 -0.1117			
				S4 -0.0058			
4	$C_s(2)$	Si1-S1 0.2047	0.2262	Si1 0.5554	-2171.48277	2.09	17.68
		Si1-S3 0.2046	0.3376	Si2 0.4490			
		Si2-S3 0.2351	0.0450	S1 0.0695			
		Si2-S4 0.1976	0.4266	S3 -0.1391			
				S4 -0.0043			
5	$D_{2h}(2)$	Si1-S1 0.2066	0.3082	Si1 0.5342	-2171.46808	2.49	17.28
		S1-S2 0.2284	0.0264	S1 -0.0171			
6	$D_{2h}(3)$	Si1-Si2 0.2212	0.2932	Si1 0.4084	-2171.42581	3.64	16.13
		Si1-S4 0.2064	0.2127	S4 0.0458			

Table 4 Bond length, overlap population, Mulliken charge, total, relative and binding energy of $(SiS_2)_2^+$

Fig. 3. Geometrical structures of different $(SiS_2)_3^+$ isomers.

shown in Table 2. The symmetry of the most stable structure of SiS_2^+ is $D_{\infty h}$, electronic state is ${}^{2}\Pi_{g}$ HOMO is π_{g} , the orbital energy is -13.95 eV, and its main component is p_x orbital of S atoms. LUMO is π_{g}^* , the orbital energy is -12.37 eV, and its main component is p_y orbital of S atoms.

The analysis of the frequency spectrum of the most stable structure of SiS_2^+ is shown in Table 3, the symmetry is $D_{\infty h}$, there are four spectral lines, three have infrared activity, the normal modes are of σ_u^+ , π_u symmetry. The strongest line (IR) is at 596 cm⁻¹, the

infrared intensity is 194.376 km/mol, the normal mode is of σ_u^+ symmetry and it is the stretching vibration of S atoms along the molecular axis.

3.2. $(SiS_2)_2^+$

 $(SiS_2)_2^+$ can be regarded as the dimer of SiS_2 and $(SiS)_2^+$ with the chemical bonding of Si-S, Si-Si, S-S. The optimized structures of $(SiS_2)_2^+$ are displayed in Fig. 2, wherein: (1) is the planar structure with Si and S atoms bound together alternately,

Structure	Symmetry	Bond length (nm)	Overlap population	Mulliken charge	Total energy (a.u.)	Relative energy (eV)	Binding energy (eV)
1	D_{2d}	Si1-S1 0.2186	0.2233	Si1 0.1782	-3257.56447	0.0	35.78
		Si3-S1 0.2117	0.2378	Si3 0.4143			
		Si3-S5 0.1990	0.4838	S1 -0.0200			
				S5 0.0366			
2	$C_{2v}(1)$	Si1-S1 0.2242	0.1339	Si1 0.5050	-3257.55767	0.19	35.59
		Si2-S1 0.2105	0.3136	Si2 0.1908			
		Si2-S3 0.2230	0.1450	Si3 0.3440			
		Si3-S3 0.2079	0.3187	S1 -0.1559			
		Si3-S5 0.2183	0.1222	S3 -0.0360			
		S5-S6 0.2080	0.0716	S5 0.1700			
3	D_{3h}	Si1-S1 0.2137	0.1965	Si1 0.3600	-3257.51318	1.40	34.38
		Si1-S4 0.1968	0.5054	S1 -0.0611			
				S4 0.0343			
4	D_{2h}	Si1-S1 0.2230	0.2359	Si1 0.5479	-3257.50517	1.61	34.17
		Si2-S1 0.2109	0.2356	Si2 0.4036			
		Si2-S6 0.1982	0.4772	S1 -0.1099			
				S6 0.0422			
5	$C_{2\nu}(2)$	Si1-S1 0.2338	0.1076	Si1 0.4318	-3257.43435	3.54	32.24
		Si2-S1 0.2103	0.2475	S1 -0.0752			
		Si2-S5 0.1985	0.4509	S5 0.0420			

Table 5										
Bond length,	overlap population	, Mulliken	charge,	total,	relative	and	binding	energy	of	$(SiS_2)_3^+$

2

Fig. 4. Geometrical structures of different $(SiS_2)_4^{\scriptscriptstyle +}$ isomers.

forming a tetratomic ring, and the other two S atoms bonding to Si atoms, its symmetry is D_{2h} , denoted as $D_{2h}(1)$; (2) is a trapezoidal structure of planar tetratomic ring with the bonding of Si-Si, S-S, and the symmetry is $C_{2\nu}$; (3) is a planar branch structure with the bonding of Si–S, and its symmetry is C_s , denoted as $C_s(1)$; (4) is a three-dimensional branch structure with the bonding of Si-S, with the plane of SiS_2 perpendicular to the plane of SiS_2^+ and its symmetry is C_s either, denoted as $C_s(2)$; (5) is a planar structure of hexatomic ring with the bonding of S-S, its symmetry also is D_{2h} , denoted as $D_{2h}(2)$; (6) is a planar structure with the bonding of Si-Si which like ethylene, its symmetry is D_{2h} , denoted as $D_{2h}(3)$. The parameters of bond length, overlap population, Mulliken charge, total, relative and binding energy are shown in Table 4. The relative energy order is obtained as (1) <(2) < (3) < (4) < (5) < (6). While the structures of dimer with Si-S bond are stable, the structures only with the bond of Si-Si, S-S are not stable. The vibrational spectra can prove this conclusion, because there are imaginary frequencies in the structures of (5) and (6). In the structure with $D_{2h}(1)$, the bond length of Si1-S1 is 0.2135 nm, the bond length of Si1-S3 is 0.1978 nm, and overlap population of them are 0.2115 and 0.4855, respectively. It can be inferred that in the stable structure of $(SiS_2)_2^+$, the bond of the Si–S of the ring is a single bond, and the external Si-S bond is a double bond. There is a negative charge on S atoms in SiS₂, and a large amount of positive charge on the Si atom of SiS_2^+ so SiS_2 and SiS_2^+ can combine together and form a tetratomic ring structure with the bonding of Si-S.

The symmetry of the most stable structure of $(SiS_2)_2^+$ is D_{2h} (Table 2), electronic state is ${}^2B_{3g}$. HOMO is b_{2u} orbital, and its energy is -12.05 eV, and its main component is p_y of S3, S4. LUMO is the b_{3g} orbital, its energy is -11.04 eV, and its main component is p_y of S3, S4 either.

There are twelve spectral lines in the vibrational spectrum of the most stable structure with D_{2h} symmetry (Table 3). Six of them have infrared activity, their vibrational modes are of b_{1u} , b_{2u} , b_{3u} symmetry. The strongest line (IR) is at 508 cm⁻¹, the infrared intensity is 886.268 km/mol, and the symmetry of the normal mode is b_{1u} . It is the stretching vibration of S3, S4 atoms along the molecular axis.

3.3. $(SiS_2)_3^+$

We designed the structures of the trimer based on the dimers, that is, the bonding of Si-S is the main binding effect among monomers. The structures are shown in Fig. 3: (1) is a three-dimensional structure with two tetratomic rings perpendicular to each other, its symmetry is D_{2d} ; (2) also is a three-dimensional structure with two tetratomic rings and a tri-atomic ring perpendicular to each other, its symmetry is $C_{2\nu}$, denoted as $C_{2\nu}$ (1); (3) is a planar structure of a hexatomic ring with a symmetry of D_{3h} ; (4) is a planar structure of two tetratomic rings with a symmetry of D_{2h} ; (5) is a three-dimensional structure with two tetratomic ring having an angle, its symmetry is also $C_{2\nu}$, denoted $C_{2\nu}$ (2). The structures are optimized and the parameters are shown in Table 5. The relative energy order is obtained as (1) < (2) < (3) < (4) <(5). We found that trimer trends have a tetratomic ring structure with the rings perpendicular to each other; than having a hexatomic ring structure. There is a large repelling effect between S atoms in the structures with the symmetry of D_{2h} and $C_{2\nu}(2)$, so they are unstable towards the other structures whose rings are perpendicular to each other.

The symmetry of the most stable structure of $(SiS_2)_3^+$ is D_{2d} (Table 2). HOMO of $(SiS_2)_3^+$ is e_g orbital, and its energy is -10.96 eV, its main component is p_y of S5 and p_x of S6. LUMO is e_u orbital, its energy is -10.55 eV, and its main component is p_y of S5 and p_x of S6, either.

There are twenty-one spectral lines in the vibrational spectrum of the most stable structure with D_{2d} symmetry of $(SiS_2)_3^+$ (Table 3). Sixteen of them have infrared activity, the symmetry of their vibrational modes are e, b₂. The strongest line (IR) is at 393 cm⁻¹, the infrared intensity is 952.310 km/mol, the symmetry of the normal mode is b₂, they are the stretching vibration of S5, S6 atoms along the molecular axis and the twisting vibration of S1–S4 in the molecular plane.

3.4. $(SiS_2)_4^+$

The optimized geometrical structures of $(SiS_2)_4^+$ are displayed in Fig. 4, and the parameters are shown in Table 6: (1) is a planar structure of three tetra-atomic rings with a symmetry of D_{2h} , denoted as $D_{2h}(1)$; (2) is

Structure	Symmetry	Bond length (nm)	Overlap population	Mulliken charge	Total energy (a.u.)	Relative energy (eV)	Binding energy (eV)
1	$D_{2h}(1)$	Si1-S1 0.2195	0.2605	Si1 0.5550	-4343.44671	3.31	48.45
		Si1-S5 0.2240	0.2304	Si4 0.3950			
		Si4-S5 0.2106	0.2342	S1 -0.22076			
		Si4-S8 0.1983	0.4784	S5 -0.1252			
				S8 0.0082			
2	$D_{2h}(2)$	Si1-S1 0.2149	0.2445	Si1 0.2189	-4343.56827	0.0	51.76
		Si1-S5 0.2118	0.2343	Si4 0.4115			
		Si4-S5 0.2111	0.2343	S1 -0.0447			
		Si4-S8 0.1991	0.2450	S5 -0.0467			
			0.4827	S8 0.0076			
3	$C_{2\nu}(1)$	Si1-S1 0.2250	0.1847	Si1 0.6083	-4343.44397	3.38	48.38
		Si1-S4 0.2213	0.2515				
		Si2-S1 0.2109	0.2299	Si2 0.3701			
		Si2-S2 0.2131	0.1994	Si4 0.3721			
		Si2-S7 0.1979	0.5015	S1 -0.2022			
		Si4-S4 0.2129	0.2104	S2 -0.0640			
		Si4-S6 0.1957	0.5247	S4 -0.1224			
				S6 -0.0289			
				S7 0.0107			
4	$C_{2v}(2)$	Si1-S1 0.2187	0.1319	Si1 0.1133	-4343.51054	1.57	50.19
		Si1-S4 0.2146	0.2511	Si2 0.3818			
		Si2-S1 0.2100	0.2601	Si4 0.3729x			
		Si2-S2 0.2137	0.2040	Si4 0.3729			
		Si2-S7 0.1982	0.4883	S1 -0.0589			
		Si4-S4 0.2149	0.2022	S2 -0.0732			
		Si4-S6 0.1953	0.5574	S4 -0.0223			
				S6 -0.0502			
				S7 0.0181			

Table 6 Bond length, overlap population, Mulliken charge, total, relative and binding energy of ${\rm (SiS_2)}_4^+$

Fig. 5. Geometrical structures of different $(SiS_2)_5^+$ isomers.

a three-dimensional structure with three tetra-atomic ring perpendicular to each other, the symmetry is also D_{2h} , denoted as D_{2h} (2); (3) is a planar structure with a hexatomic ring and a tetra-atomic ring, its symmetry is $C_{2\nu}$, denoted as $C_{2\nu}$ (1); and (4) is a three-dimensional structure with a hexatomic ring and a tetraatomic ring perpendicular to each other, its symmetry is also $C_{2\nu}$, denoted as $C_{2\nu}$ (2). The relative energy order is (2) < (4) < (3) < (1). The difference between (1), (3), (2), and (4) is that the rings in the first two structures are in the same plane, while the rings in the latter are perpendicular to each other. It indicates that if Si atoms and S atoms bond to the Si atoms are in the same plane, there will be a large

Structure	Symmetry	Bond length (nm)	Overlap population	Mulliken charge	Total energy (a.u.)	Relative energy (eV)	Binding energy (eV)
1	D_{2d}	Si1-S1 0.2150	0.2516	Si1 0.2286	-5429.55054	0.0	67.15
		Si2-S1 0.2174	0.2097	Si2 0.2016			
		Si2-S7 0.2137	0.2677	Si5 0.3521			
		Si5-S7 0.2171	0.1851	S1 -0.0010			
		Si5-S9 0.1935	0.5995	S2 -0.0417			
				S9 -0.0821			
2	$C_{2\nu}(1)$	Si1-S1 0.2178	0.1852	Si1 0.1619	-5429.51252	1.03	66.12
		Si1-S4 0.2151	0.2529	Si2 0.3671			
		Si2-S1 0.2110	0.2425	Si4 0.2413			
		Si2-S2 0.2137	0.2037	Si5 0.3961			
		Si2-S9 0.1973	0.5128	S1 -0.0814			
		Si4-S4 0.2155	0.2367	S2 -0.0837			
		Si4-S6 0.2171	0.2515	S4 -0.0392			
		Si5-S6 0.2120	0.2323	S6 -0.0614			
		Si5-S8 0.1978	0.5107	S8 -0.0322			
				S9 -0.0268			
3	$C_{2\nu}(2)$	Si1-S1 0.2142	0.1965	Si1 0.3407	-5429.50536	1.23	65.92
	200 /	Si1-S8 0.1942	0.5871	Si2 0.1281			
		Si2-S1 0.2137	0.1953	Si5 0.4230			
		Si2-S2 0.2146	0.1896	S1 -0.0773			
		Si2-S4 0.2193	0.2278	S2 -0.0741			
		Si5-S4 0.2106	0.2497	S4 -0.0305			
		Si5-S9 0.1995	0.4705	S8 -0.0928			
				S9 0.0002			

Table 7 Bond length, overlap population, Mulliken charge, total, relative and binding energy of $(SiS_2)_5^+$

repelling effect between S atoms, so the structures will be unstable. Comparing the bond length and the overlap population, the bonds of Si–S in structures (3) and (1) are longer than those in structures (2) and (4), and the overlap population is less. There are great differences of total energy, so we conclude that structures (2) and (4) are more stable than structures (1) and (3). However, (4) has an imaginary frequency, so (2) is the most stable structure.

The symmetry of the most stable structure of $(SiS_2)_4^+$ is D_{2h} (Table 2), its electronic state is ${}^2B_{2u}$. HOMO is the b_{1g} orbital, and its energy is -10.46 eV, its main component is p_y of S7, S8. LUMO is the b_{2u} orbital, its energy is -10.10 eV, and its main component is p_y of S7 and S8 either.

There are thirty spectral lines in the vibrational spectrum of the most stable structure of $(SiS_2)_4^+$ with D_{2h} symmetry (Table 3). Fifteen of them have infrared activity, the symmetries of their vibrational modes are b_{1u} , b_{2u} , b_{3u} . The strongest line (IR) is at 679 cm⁻¹, the infrared intensity is 1593.840 km/mole, the symmetry of the normal mode is b_{3u} , and it is the stretching vibration of Si atoms and S7, S8 atoms along the molecular axis.

3.5. $(SiS_2)_5^+$

Based on the conclusions from geometric characters of tetramers, we designed the geometric structures of the $(SiS_2)_5^+$ pentamer. The optimized structures are displayed in Fig. 5. The geometric character of these structures is that the monomers bond together with the tetratomic and hexatomic rings perpendicular to each other. The parameters are shown in Table 7: (1) is a structure of D_{2d} symmetry with four tetratomic rings perpendicular to each other; (2) with two tetratomic rings perpendicular to each other and then perpendicular to a hexatomic ring, its symmetry is $C_{2\nu}$, denoted as $C_{2\nu}$ (1); and (3) with two tetratomic rings perpendicular to a hexatomic ring, respectively, its symmetry is also $C_{2\nu}$, denoted as $C_{2\nu}$ (2). The relative energy order is obtained as (1) < (2) < (3). In the structures with hexatomic rings, the Si-S bond is longer than that in the structure with tetratomic rings, and the overlap population is also less. The structures with tetratomic rings are more stable than the structures with hexatomic rings.

The most stable structure of $(SiS_2)_5^+$ is of D_{2d}

symmetry (Table 2), and its electronic state is ${}^{2}A_{2}$. Its HOMO is b₁ orbital, its energy is -10.43 eV, and its main component are p_x and p_y orbitals of S atoms. Its LUMO is the b₂ orbital, its energy is -10.18 eV, and its main component are p orbitals of S atoms.

There are thirty-nine spectral lines in the vibrational spectrum of the most stable structure of $(SiS_2)_5^+$ with D_{2d} symmetry (Table 3). Twenty-nine of them have infrared activity and the symmetries of their vibrational modes are e, b₂. The strongest line (IR) is at 787 cm⁻¹, the infrared intensity is 1306.893 km/mol, the normal mode is b₂ symmetry, and it is the stretching vibration of Si4 and Si5 atoms and S9, S10 atoms along the molecular axis.

4. Conclusions

- 1. The most stable structures of SiS_2^+ is with $D_{\infty h}$ symmetry, and $(SiS_2)_n^+$ (n = 2-5) have tetraatomic rings of Si and S atoms bonded alternatively, and the rings are perpendicular to each other.
- 2. It is predicted that the growing trend of $(SiS_2)_n^+$ based on the bonding of Si and S atoms with SiS_2^+ as the core and SiS_2 as the building block, forming tetratomic ring molecular chains with rings perpendicular to each other.
- 3. From the component of the most stable structure molecular orbitals, one can notice that all the HOMO and LUMO orbitals are formed by p atomic orbitals of S atoms, the energy values of HOMO and LUMO are all negative, and the energy gap decreases as the length of the molecular chain increases. So the stability of the molecular chain increases.

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China.

References

- H.W. Kroto, J.R. Heath, S.C. O'Brier, R.F. Curl, R.E. Smalley, Nature 318 (1985) 162.
- [2] Ji-Kang Feng, Chin. J. Org. Chem. 12 (1992) 567.

- [3] Ji-Kang Feng, Chin. J. Org. Chem. 13 (1993) 25.
- [4] K. Raghavachari, J. Chem. Phys. 84 (1986) 5672.
- [5] C.M. Rohlfing, Raghavachari, J. Chem. Phys. 96 (1992) 2114.
- [6] Reiko Kishi, Yuichi Negishi, Hiroshi Kawamata, et al., J. Chem. Phys. 108 (1998) 8039.
- [7] Cangshan Xu, T.R. Taylor, G.R. Burton, D.M. Neumark, J. Chem. Phys. 108 (1998) 7645.
- [8] Reiko Kishi, Suehiro Lwata, Atsushi Nakajima, Koji Kaya, J. Chem. Phys. 107 (1997) 3056.
- [9] Reiko Kishi, Hiroshi Kawamata, Yuichi Negishi, et al., J. Chem. Phys. 107 (1997) 10 029.
- [10] J.A. Harkless, D.K. Stillinger, F.H. Stillinger, J. Phys. Chem. 100 (1996) 1098.
- [11] S.K. Nayak, B.K. Rao, S.N. Khanna, P. Jena, J. Chem. Phys. 109 (1998) 1245.
- [12] J.L. Fye, M.F. Jarrold, J. Phys. Chem. 101 (1997) 1836.
- [13] J.D. Presilla-Marquez, C.M.L. Rittby, W.R.M. Graham, J. Chem. Phys. 107 (1997) 8367.
- [14] D. Hohl, R.O. Jones, R. Car, M. Parrinello, J. Chem. Phys. 89 (1988) 6823.
- [15] K. Raghavachari, C.M. Rohlfing, J.S. Binkley, J. Chem. Phys. 93 (1990) 5862.
- [16] Wei-Jie Huang, Zhao-Yang Liu, Rong-Bin Hang, Lan-Sun Zang, Acta Chimica Sinica 56 (1998) 200 (in Chinese).
- [17] Bi-Xian Peng, Zhen Gao, Fanao Kong, et al., Chin. Sci., Ser. B 27 (1997) 221.

- [18] Yang Shi, Nan Zhang, Zhen Gao, Fanao Kong, Qihe Zhu, J. Chem. Phys. 101 (1994) 9528.
- [19] Zhong De Yu, Nan Zhang, Xiaojun Wu, Zhen Gao, Qihe Zhu, Fanao Kong, J. Chem. Phys. 99 (1993) 1765.
- [20] Nan Zhang, Zhongde Yu, Xiaojun Wu, Zhen Gao, Qihe Zhu, Fanao Kong, J. Chem. Soc. Faraday Trans. 89 (1993) 1779.
- [21] Yang Shi, Nan Zhang, Zhen Gao, Fanao Kong, Qihe Zhu, Chemistry 8 (1993) 27 (in Chinese).
- [22] Wenjing Wang, Peng Liu, Dongbo Hu, Zhen Gao, Fanao Kong, Qihe Zhu, Chin. J. Chem. Phys. 10 (1997) 110 (in Chinese).
- [23] M. Hochlaf, G. Chambaud, P. Rosmus, J. Chem. Phys. 108 (1998) 4047.
- [24] A. Sanov, W.C. Lineberger, K.D. Jordan, J. Phys. Chem. 102 (1998) 2509.
- [25] Toshihiko Maeyama, Takanobu Oikawa, Tohru Tsumura, Naohiko Mikami, J. Chem. Phys. 108 (1998) 1368.
- [26] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 270.
- [27] W.R. Wadt, P.J. Hay, J. Chem. Phys. 82 (1985) 284.
- [28] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 299.
- [29] R. Ditchfield, W.J. Hehre, J.A. Pople, J. Chem. Phys. 54 (1971) 724.
- [30] W.J. Hehre, R. Ditchfield, J.A. Pople, J. Chem. Phys. 56 (1972) 2257.
- [31] P.C. Hariharan, J.A. Pople, Theo. Chim. Acta. 28 (1973) 213.
- [32] M.S. Gordon, Chem. Phys. 76 (1980) 163.
- [33] P.C. Hariharan, J.A. Pople, Mol. Phys. (1974) 209.