第9期、1586~1590	ACTA CHIMICA SINICA	No. 9, 1586 ~ 1590
2002年第60巻 第0間 15%6 1500	ACTA CHIMICA SINICA	Vol. 60, 2002

Ti₃P☆ 团簇结构的理论研究

 Ob A
 Ob A

 潘 革 波 ^a 封继 康 ^{*,a} 任 爱 民 ^a 韩春英 ^b 高 振 ^b

 (*吉林大学理论化学研究所 理论化学计算国家重点实验室 长春 130023)

 (*中国科学院化学研究所 分子反应动力学国家重点实验室 北京 100080)

摘要 利用密度泛函理论中的 B3LYP 方法,选择 LANL2DZ 汉 Zeta 基组,并考虑极化函数,对 Ti₃P; 团簇可能存在的 几何构型进行了理论计算研究,得到了 Ti₃P₆* 具有 C,对称性的最稳定构型,所得构型很好地说明了激光光解的实 验结果.

关键词 Ti₃P⁺ 团簇,几何构型,DFT

Theoretical Studies on the Structures of Ti₃P₆⁺ Cluster

PAN, Ge-Bo^a FENG, Ji-Kang^{*, a} REN, Ai-Min^a HAN, Chun-Ying^b GAO, Zhen^b (^a State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023)

(^b State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080)

Abstract The possible geometrical structures and relative stability of $Ti_3P_6^+$ cluster are explored by means of

density functional theory (DFT) calculations. The effects of polarization functions and electron correlation are included in these calculations. The results show that the most stable structure of $Ti_3P_6^+$ belongs to the C_s point group. The properties of $Ti_3P_6^+$ is in good agreement with the experimental results.

Keywords $Ti_3P_6^+$ clusters, geometric structure, DFT

团簇是一种介于普通分子或原子与宏观物体之间的特殊物质形态,具有特殊的电子结构,一般具有高熔点、高硬度、超导、润滑及催化等特性,被广泛应用于无机化学、材料化学等领域中.研究团簇的结构和性质,无疑对深入了解组成元素的成键特性、化学键性能及凝聚相的形成机制具有重要的意义.

自从 1992 年 Castleman 等^[1,2] 发现金属碳笼 (Met-Cars)以来,由金属和非金属组成的二元团簇引 起了人们的极大关注^[3-10].最近,我们在利用激光 直接溅射红磷与钛的粉末混合物实验中,发现了 Ti_mP⁺ 阳离子团簇的质谱峰,证明了钛磷二元团簇 的存在,发现不同比例的样品所形成的 Ti/P 二元团 簇阳离子的组成基本保持一致,簇离子的分布不受 样品组成的影响,并通过紫外激光光解实验,得到了 团簇离子的光解通道和产物.为了进一步了解这些 新型 Ti_mP⁺ 二元团簇的结构,成键特性及其形成规 律,本文利用量子化学中的密度泛函理论(DFT)方 法,对 Ti₃P⁺ 团簇进行了理论计算研究.

1 理论与计算方法

利用 Gaussian 98 程序中的 B3LYP 方法(由 Becke 建议的杂化交换函数和 Lee-Yang-Parr 相关函 数组成),选择 LANL2DZ 双 Zeta 基组,并考虑极化函

E-mail; fenjikan@public.cc.jl.en
 Received December 31, 2001; accepted May 18, 2002.
 国家自然科学基金(No. 29890210)资助项目.

数,对 Ti₃P^{*} 团簇可能存在的儿何构型进行了理论 研究.在此基础上,通过计算能量的二阶导数,得到 直角坐标的力常数,然后把它们转化为内坐标的力 常数,再用 F-G 矩阵方法计算了 Ti₃P^{*} 团簇可能结 构的振动频率.

2 结果与讨论

通过分析激光溅射实验中得到的 Ti_mP⁺ 团簇

质谱图可以看出,当 P 原子为偶数时,质谱峰的强度 相对较大.另外,在紫外激光光解实验中,Ti/P 团簇 中的磷原子,主要以 P₂, P₄ 或 P₆ 的形式被剥离,这 就说明 Ti/P 二元团簇中的磷原子趋向于成对地出 现,很少存在孤立的磷原子.因此我们以 P₂, P₄ 或 P₆ 为母体,来设计 Ti₃P^{*} 团簇的初始构型,在计算中 同时也考虑了其它可能存在的稳定构型,优化所得 的键长、Mulliken 电荷、重叠布居和能量列于表1中. 图 1 中给出了优化所得的几何构型及其能量.

表1 Ti₃P₆ 团簇可能构型的的键长、Mulliken 电荷、重叠布居和能量

几何构型	对称性	键长(×10 ⁻¹ nm)		Mulliken 电荷				能量(a.u.)
		Ti(1) - P(2)	2.4179	T i(1)	0.5283	Ti(1) - P(2)	0.2151	
1	C_{2v}	Ti(1) - P(4)	2.6771	P(2)	- 0.0742	$T_{i}(1) - P(4)$	0.1547	- 213.1550
		P(2) - P(4)	2.3474	P(4)	0.1104	P(2) - P(4)	0.0597	
		$T_{i}(6) - P(3)$	2.5141	Ti(6)	0.1228	$T_i(6) - P(3)$	0.1161	
		$T_{i}(6) - P(4)$	2.8502	P(8)	0.0768	Ti(6) - P(4)	0.2254	
		$T_{1}(6) - P(8)$	2.3892			$T_i(6) - P(8)$	0.2092	
		Ti(6)—Ti(7)	2.4874			Ti(6)—Ti(7)	0.0952	
		P(8)—P(9)	2.2084			P(8)—P(9)	0.1447	
		Ti(3) - P(2)	2.1933	P(1)	- 0.0931	$T_{i}(3) - P(2)$	0.3849	- 213.1147
		P(1) - P(2)	2.0964	Ti(3)	0.5447	P(1) - P(2)	0.3695	
2	C_{2i}	Ti(3) - P(5)	2.3814	P(5)	- 0.08678	$T_i(3) - P(5)$	0.2469	
		P(5) - P(6)	2.2263	P(7)	- 0.0868	P(5) - P(6)	0.0828	
		$T_{i}(9) - P(5)$	2.3866	Ti(9)	0.4440	$T_i(9) - P(5)$	0.2372	
		Ti(1) - P(2)	2.5388	Ti(1)	0.6282	Ti(1) - P(2)	0.2044	- 213.0285
		P(2) - P(3)	2.2513	P (2)	- 0.0036	P(2) - P(3)	- 0.0663	
2	C	P(2) - P(4)	2.2922	P(4)	- 0.1 368	P(2) - P(4)	0.1290	
3	C ₂₁	Ti(8) - P(4)	2.6049	P(6)	- 0.0623	$T_i(8) - P(4)$	0.2667	
		$T_{i}(8) - P(6)$	2.3475	Ti(8)	0.3887	$T_i(8) - P(6)$	0.2962	
		P(6) - P(7)	2.3121			P(6) - P(7)	0.0228	
	C _{2v}	Ti(1) - P(2)	2.4611	Ti(1)	0.3596	$T_{i}(1) - P(2)$	0.2000	- 213.0301
		Ti(1)— $Ti(4)$	2.6858	P(2)	- 0.0338	Ti(1)— $Ti(4)$	0.0749	
		$T_{i}(4) - P(2)$	2.3348	Ti(4)	0.2471	$T_{i}(4) - P(2)$	0.3259	
4		$T_i(4)$ — $T_i(5)$	3.4745	P(6)	-0.0661	Ti(4)— $Ti(5)$	- 0.1349	
		$T_{i}(4) - P(6)$	2.6050	P(8)	0.1730	$T_{i}(4) - P(6)$	0.2512	
		P(6) - P(8)	2.3033			P(6) - P(8)	0.1743	
		P(8)—P(9)	2.3816			P(8) - P(9)	0.0138	
	C_{2v}	$T_i(1) - P(2)$	2.5478	Ti(1)	0.2091	Ti(1) - P(2)	0.2042	- 213.1526
		Ti(1) - P(4)	2.7076	P(2)	0.1123	Ti(1) - P(4)	- 0.0293	
5		P(2) - P(4)	1.9997	P(4)	- 0.0107	P(2) - P(4)	0.3916	
		$T_{i}(1) - P(6)$	2.7553	P(6)	- 0.0490	Ti(1) - P(6)	0.1067	
		$T_{i}(8) - P(5)$	2.3952	Ti(8)	0.3430	Ti(8) - P(5)	0.2506	
		Ti(8)—P(7)	2.3079			Ti(8) - P(7)	0.3272	
		Ti(8)—Ti(9)	3.1928			Ti(8)— $Ti(9)$	0.0527	

 $\label{eq:table1} \textbf{Table1} \quad The \ bond \ lengths, \ Mulliken \ changes, \ overlap \ populations \ and \ energies \ of \ the \ possible \ geometrical \ structures \ of \ Ti_3P_6^+ \ cluster$

化学学报

续表

1何构型	对称性	键长(×10 ⁻¹ nm)		 Mulliken 电荷		重叠布居		能量(a.u.)
		Ti(1) - P(4)	2.5911	Ti (1)	0.2482	Ti(1) - P(4)	0.1735	
6 /	D_{3h}	Ti(1)— $Ti(2)$	3.3028	P(4)	0.0056	$T_i(1)$ — $T_i(2)$	0.0565	- 212.7934
		P(4) - P(5)	2.2520			P(4) - P(5)	0.1762	
7		P(1) - P(4)	2.1886	P(1)	- 0.0599	P(1) - P(4)	0.2130	- 213.0112
		P(3) - P(4)	2.3959	P(3)	- 0.0197	P(3) - P(4)	0.0630	
	C21	$P(1) - T_i(9)$	2.4799	Ti(7)	0.2911	P(1)—Ti(9)	0.2811	
		$T_{i}(7) - P(3)$	2,4425	T i(9)	0.6164	Ti(7) - P(3)	0.2853	
		$T_i(7) - T_i(8)$	2.2683			$T_i(7) - T_i(8)$	0.1549	
		Ti(1) - P(2)	2.6024	Ti(1)	0.1473	$T_i(1) - P(2)$	0.1348	- 212.9424
		P(2) - P(3)	2.3384	P(2)	- 0.0944	P(2) - P(3)	- 0.0790	
		P(2)— $Ti(4)$	2.4367	Ti(4)	0.4596	P(2)Ti(4)	0.2820	
8	C_{2v}	$T_{i}(4) - P(6)$	2.2194	P(6)	0.0128	Ti(4)—P(6)	0.4037	
		P(6) - P(7)	2.3507	P(8)	0.0483	P(6) - P(7)	0.1518	
		$T_i(1) - P(8)$	2.2317			$T_{i}(1) - P(8)$	0.3170	
		P(8)—P(9)	2.4100			P(8) - P(9)	0.0572	
		Ti(1) - P(2)	2.5426	$T_i(1)$	0.6381	Ti(1) - P(2)	0.2356	
		P(2) - P(4)	2.2943	P(2)	-0.0779	P(2) - P(4)	0.1105	
9	<i>C</i> ₂₁	P(4) - P(6)	2.2042	P(4)	0.0683	P(4) - P(6)	0.2445	- 213.0322
		$P(6) - T_i(8)$	2.4373	P(6)	- 0.1948	P(6)— $Ti(8)$	0.2784	
		Ti(8) - Ti(9)	2.6665	Ti(8)	0.3854	Ti(8)—Ti(9)	0.1595	
		$T_{i}(1) - P(2)$	2.3575	$T_i(1)$	0.2258	$T_i(1) - P(2)$	0.3794	
		$T_{i}(1) - P(4)$	2.8872	P(2)	~ 0.0030	$T_{i}(1) - P(4)$	-0.0187	~ 212.9918
	C_{2r}	P(2) - P(4)	2.1196	P(4)	- 0.0745	P(2) - P(4)	0,2470	
10		P(4)— $Ti(6)$	2.4457	Ti(6)	0.4256	P(4)-Ti(6)	0.2566	
		$T_{i}(6) - P(8)$	2,2609	P(8)	0.0390	$T_{i}(6) - P(8)$	0.3748	
		P(8) - P(9)	2.4269			P(8) - P(9)	0.1050	
		P(1) - Ti(3)	2.5002	P (1)	- 0,1096	P(1) - Ti(3)	0.1994	- 213.1829
		P(1) - Ti(9)	2.2490	Ti(3)	0.1853	P(1) - Ti(9)	0.4296	
		$T_{i}(3) - T_{i}(4)$	2,5396	P(2)	0.0128	$T_i(3) - T_i(4)$	- 0. 0429	
	C _s	$T_i(3) - P(2)$	2.4022	P(5)	0.0743	Ti(3) - P(2)	0.2302	
11		P(2) - P(7)	2.2513	P(7)	0,1530	P(2) - P(7)	0.1515	
		P(5) - P(7)	2.3613	P(8)	- 0.0984	P(5) - P(7)	0.1167	
		P(5) - P(8)	22367	Ti(9)	0.5054	P(5) - P(8)	0.1526	
		P(8) - Ti(9)	2.4456		012021	$P(8) - T_1(9)$	0.2685	
12		P(1) - P(3)	2. 2669	P(1)	- 0.0264	P(1) - P(3)	0,1360	- 213.2362
	С,	P(1) - Ti(8)	2. 3206	P(2)	- 0.0258	P(1) - Ti(8)	0 3186	
		P(2) - P(3)	2,2931	P(3)	0.2172	P(2) - P(3)	0 1216	
		P(4) - Ti(5)	2.4477	P(6)	0.0821	P(4) - Ti(5)	0.2836	
		P(6) - Ti(5)	2.4567	P(7)	- 0.0259	P(6) - Ti(5)	0.2077	
		P(7) - Ti(5)	2.6412	Ti(5)	0.2946	P(7) - Ti(5)	0 0407	
		P(7) - Ti(8)	2, 2662	Ti(8)	0 2156	$P(7) - T_1(8)$	0.3441	
		P(6) - P(7)	2, 1157		0.2100	P(6) - P(7)	0. 101	
		$T_{i}(\mathbf{s}) \rightarrow T_{i}(\mathbf{o})$	2.1137 2.7570			$T_{1}(5) - T_{1}(0)$	0.2191	

图 1 Ti₃P^{*} 团簇可能存在的几何构型

Figure 1 The possible geometrical structures of $Ti_3P_6^+$ cluster

从表1中可以看出,Ti₃P⁺ 各种可能存在的几何 构型的稳定性顺序为:12>11>1>5>2>9>4>3> 7>10>8>6.从图1中各个构型的结构特点分析可 以看出,构型1,4和9具有相似的结构,均有两个部 分组成,一个四面体和一个三角双锥,构型1通过六 个 Ti—P 键连接, 而构型 9 仅通过两个 P—P 键连接, 所以构型 1 的稳定性明显高于构型 9.考虑到构型 4 中的 P₄ 是一个稳定结构, 易于从构型 4 中分离出来, 同时钛原子之间距离较近, 具有较大的排斥作用, 其重叠布居为 – 0.1349, 所以构型 4 的能量要高

于构型 9.构型 2 和构型 5 中的磷原子,由于钛原子 成键的饱和性,集中了较大的负电荷,使得整个构型 具有较大活性,稳定性也相对较差.构型3和构型1 具有相似之处,但构型3中由钛和磷组成的平面四 边形,具有较大的环张力,两个子体系也仅靠 Ti-P 键连接,所以能量要高于构型1.构型6中,虽然Ti--Ti之间存在一定的相互作用,但从计算可知 P—Ti— P的键角为 153.2°,我们对 TiP⁺ 的研究结果表明, TiP_2^+ 团簇最稳定结构为 $C_{2\nu}$ 对称性, P—Ti—P 键角 为 52.6°,因此构型 6 具有较大的角张力,所以构型 6 是稳定性最差的构型.构型8和构型10中的磷原子 均以 P,的形式出现,除两个磷原子成键饱和之外, 其余四个磷原子均只与两个原子成键,即这四个磷 原子存在未成对电子,具有较大的活性,所以稳定性 较差.构型11和构型12相似,均可看作是立方体外 加一个磷原子或钛原子得到,整个构型比较紧凑,而 且钛原子和磷原子的成键都符合经典的价键理论, 所以这两个构型是所有可能存在的几何构型中最稳 定的构型.相应的振动频率计算也说明了这一点,构 型 11 和 12 的振动频率无虚频.

由 Ti₃P^{*} 二元团簇的激光光解实验得出, Ti₃P^{*} 的光解通道主要有两条,其一为

时产生的团簇离子本身是亚稳态的情况,也是可能 存在的.

由各种可能几何构型的结构特点及能量顺序可 以得出,在Ti₃P^{*} 团簇的稳定构型中,应满足 P 原子 与三个原子成键,同时由于 Ti/P 比值较大,Ti 原子 之间应趋向于互相成键,而且所得最稳定构型相对 比较紧凑,以使其表面积最小.

最后我们还可以通过分析团簇的价电子是否可 以填充满过渡金属的 d 轨道来说明 Ti₃P₀* 团簇的稳 定性.Ti 的外层电子组态为 3d²4s²,可以认为有 4 个 价电子,P的外层电子组态为 3s²4p³,可假定 P 原子 在成键时提供3个价电子,因此Ti₃P₆共有3×4+6 ×3=30个价电子,三个 Ti 共有 15个 d 轨道,30个 价电子正好填充满 15 个 d 轨道,因此 Ti₃P₆ 是稳定 的.Ti₃P^{*} 有 29 个价电子,也基本填满 15 个 d 轨道, 因此也是稳定的.

References

- 1 Guo, B.-C.; Kerns, K. P.; Castleman, Jr. A. W. Science 1992, 255, 1411.
- 2 Guo, B.-C.; Wei, S.; Purnell, J.; Buzza, S.; Castleman, Jr. A. W. Science 1992, 256, 515.

 $Ti_3P_6^+ \rightarrow Ti_3P_4^+ + P_2$

其二为

 $Ti_3P_6^+$ → $Ti_3P_2^+$ + $P_4($ 或 $2P_2)$

可见并没有奇数磷原子被剥离.从构型 12 的结构分 析中可以得出,构型 12 中的磷原子基本保持了四面 体结构的 P_4 或 P_2 ,所以在一定能量作用下可以两个 磷原子以 P2 的形式被剥离,生成 Ti3P4+,或四个磷 原子以 P4 的形式被剥离,生成 Ti3P2⁺. 同时构型 12 是各种可能构型中能量最低的构型,其能量为 -213.2362 a.u.,因此我们认为实验中发现的 Ti3P6* 二元团簇很可能就是构型 12. 另外从构型 11 的结构 分析中不难看出,构型 11 中的磷原子也可以以 Pa 的形式被剥离,可以很好地解释第二条光解通道,因 此我们认为构型 11 虽不是最稳定构型,其能量为 -213.1829 a.u., 稍高于构型 12, 但考虑到激光溅射

- Yu, Z.; Zhang, N.; Gao, Z.; Zhu, Q.-H.; Kong, F.-A. 3 J. Chem. Phys. 1993, 99, 1765.
- 4 Zhang, N.; Yu, Z.; Wu, X.; Gao, Z.; Kong, F.-A. J. Chem. Soc., Faraday Trans. 1993, 89, 1779.
- Zhang, N.; Shi, Y.; Gao, Z.; Kong, F.-A.; Zhu, Q.-H. 5 J. Chem. Phys. 1994, 101, 1219.
- Musselman, I. H.; Linton, R. W.; Simons, D. S. Anal. 6 Chem. 1988, 60, 110.
- Shi, Y.; Zhang, N.; Gao, Z.; Kong, F.-A.; Zhu, Q.-H. 7 J. Chem. Phys. 1994, 101, 9528.
- Wang, C.-R.; Huang, R.-B.; Liu, Z.-Y.; Zheng, L.-S. 8 Chem. Phys. 1995, 201, 23.
- Wang, S.-F.; Feng, J.-K.; Yu, K.-Q.; Cui, M.; Ren, 9 A.-M.; Sun, C.-C.; Liu, P.; Gao, Z.; Kong, F.-A. J. Mol. Struct. (Theochem) 2000, 499, 241.
- Wells, A. F. Structural Inorganic Chemistry, Oxford 10 University Press, London, 1975, p. 673.

(A0112312 SHEN, H.; FAN, Y. Y.)