$1355 \sim 1358$

硅-硫二元团簇 $[(SiS_2)_nS]^-(n=1\sim 4)$ 的 结构和稳定性的量子化学研究

王素凡^{1,2} 封继康^{1*} 孙家钟¹ 刘 鹏² 高 振² 孔繁敖²

- (1. 吉林大学理论化学研究所,理论化学计算国家重点实验室,长春 130023;
- 2. 中国科学院化学研究所,分子反应动力学国家重点实验室,北京 100080)

摘要 用密度泛函(DFT)方法(B3LYP/6-31+ G^*)研究了硅硫团簇 $[(SiS_2)_nS]^-(n=1\sim 4)$ 的可能几何构型,得到各稳定构型的电子结构,并计算了相应的振动频率,预测了稳定构型的振动光谱. 由其稳定构型的比较可在理论上预测团簇的生长规律,并可初步预测团簇的形成机理.

关键词 硅硫团簇;几何构型;电子结构;振动光谱

中图分类号 〇641

文献标识码 A

文章编号 0251-0790(2001)08-1355-04

随着团簇研究的不断深入,对团簇的理论研究越来越显得重要[-4]. 最近我们用直接激光溅射含有硅和硫的混合物粉末样品,得到了含有硅硫的二元团簇离子,用串级飞行时间质谱仪对其产物的组成进行分析发现,产物中较稳定的团簇离子具有较强的质谱峰,如 $(SiS_2)_n^{\sharp}$, $[(SiS_2)_n^{\sharp}S]^{\sharp}$ 等. 但实验上只能得到各个团簇的元素组成,并不能得到各团簇的具体微观几何和电子结构. 在前期的工作[-6]中,已经对 $(SiS_2)_n^{\sharp}$ 的各种团簇离子进行了理论计算,本文在此基础上对团簇 $[(SiS_2)_n^{\sharp}S]^{-}$ 进行量子化学计算,并根据所得的结果对团簇构型的稳定性和形成规律进行理论探讨.

1 理论方法

在 O200 服务器上用 Gaussian 98 程序进行分子轨道计算. 用含有电子相关效应的密度泛函 (DFT)中(B3LYP)方法 [$7\sim 9$],在考虑极化函数的 $6-31+G^*$ 水平上进行 [$(SiS_2)_nS$] $-(n=1\sim 4)$ 几何构型 优化,得到相应的稳定几何构型,并对各种构型在相应的水平下进行振动频率的计算,预测相应的稳定构型的振动光谱.

2 优化结果

2. 1 $\lceil (SiS_2)S \rceil^-$

设计 $[(SiS_2)S]^-$ 的几何构型并用 $B3LYP/6-31+G^*$ 方法优化得到的构型如图 1,其中构型 1 为 C_2 。对称性,3 个硫原子与硅原子在同一平面内形成一四元环. 构型 2 亦为 C_2 。对称性,3 个硫原子均与硅原子成键形成一平面 Y 形结构. 构型 3 为 C_3 对称性,3 个硫原子形成一平面且均与面外的硅原子以不同的成键方式成键. 构型 4 为 C_3 对称性,硅原子与硫原子形成非平面的四元环. 优化所得各构型的稳

Fig. 1 Geometrical structures of $[(SiS_2)S]^-$ 定性顺序为: 2>1>4>3. 振动频率计算得构型 2 的振动频率无虚频,为平衡构型,可以预测具有 C_2

收稿日期: 2000-06-15.

基金项目: 国家自然科学基金(批准号: 29890210)资助.

对称性的构型为 2 的[$(SiS_2)S$] 最稳定构型. 其电子态为 2B_2 ,HOMO 为 b_2 轨道,能量为-2.5303 eV,主要由 S1 原子的 p_y , p_z 和 S2 原子的 p_z 轨道组成,LUMO 为 b_2 轨道,能量为-0.6166 eV,主要由 S1 原子的 p_y , p_z 和 S2 原子的 p_z 轨道组成. 相应的振动光谱计算得出 593 cm $^{-1}$ 为一较强的红外谱线,对应 Si 原子的垂直于分子 C_2 轴的剪切振动.

2. 2 $[(SiS_2)_2S]^-$

以 $[(SiS_2)_2S]^-$ 为基础,通过增加一个 SiS_2 单元的方法设计 $[(SiS_2)_2S]^-$ 的几何构型,优化后得到的几何构型如图 2,其中构型 1 为 C_2 。对称性,2 个硅原子与 2 个硫原子形成闭合的平面四元环,另外 3 个硫原子分别与硅原子结合成键,所有原子均在同一平面内。构型 2 为 C_2 。对称性,2 个硅原子与 2 个硫原子形成闭合的平面四元环,另外 3 个硫原子分别与硅原子结合成键,所有原子均在同一平面内。

Fig. 2 Geometrical structures of $[(SiS_2)_2S]^-$

构型 2 为 C_{2v} 对称,2 个硅原子与 2 个硫原子形成平面四元环,另外 3 个硫原子分别与硅原子结合成键. 但形成的硅硫三原子平面与硅硫原子的四元环平面垂直. 构型 3 为 C_s 对称性,2 个硅原子与 2 个硫原子交替成键形成一平面四元环,另 3 个硫原子与硅原子形成一非平面的四元环,与硅原子成键的硫原子共平面. 构型 4 为 C_{2v} 对称性,硅与硫原子交替形成两个互相垂直的四元环. 由优化构型的能量得出各构型的稳定性顺序为 2>4>1>3. 进一步的频率计算得出只有构型 2 无虚频,而其它构型均存在虚频,可以预测 $[(SiS_2)_2S]^-$ 只存在一种稳定构型. 构型 2 的电子态为 2B_1 ,HOMO 为 a_2 轨道,能量为-2.889 8 eV,主要由 Si 原子和 S1 原子的 p_y 轨道组成,LUMO 为 b_1 轨道,能量为-0.939 6 eV,主要由 S1 原子的 p_x 轨道组成. 振动频率计算得出构型 2 具有 15 条振动谱线,其中 14 条具有红外活性,两条较强振动分别为 584 cm $^{-1}$ 和 748 cm $^{-1}$,分别为 Si1 和 Si2 原子沿分子链方向的伸缩振动.

2. 3 $[(SiS_2)_3S]^-$

Fig. 3 Geometrical structures of $[(SiS_2)_3S]^-$

分子链方向的伸缩振动,构型 **3** 中有 2 条较强振动,位于 $324~{\rm cm}^{-1}$ 和 $426~{\rm cm}^{-1}$,分别为 S2,S3 原子在分子环上的涨缩振动.

2. 4 $[(SiS_2)_4S]^-$

用在 $[(SiS_2)_3S]^-$ 几何构型基础上增加 $1 \cap SiS_2$ 单元的方法设计 $[(SiS_2)_4S]^-$ 的几何构型如图 4,其

Fig. 4 Geometrical structures of $[(SiS_2)_4S]^-$

3 讨 论

 $[(SiS_2)_nS]^-(n=1\sim4)$ 团簇稳定构型的参数列于表 1,其生长规律基本为以 $[(SiS_2)S]^-$ 的稳定构型为基核,以 SiS_2 为单元,硅硫原子交替形成四元环链的方式生长。Sin-S(n+1) 的键长逐渐减小(由 0.203~8减至 0.196~2~nm),当 $n=2\sim4$ 时,Si1-S1 的键长变化不大, $(0.206~6\sim0.206~1~nm)$ 。 Sin 所带正电荷依次增多 $(0.220~6\sim0.347~17)$,S(n+1)所带负电荷却依次减少 $(-0.406~3\sim-0.303~7)$ 。 Sin 原子带负电荷,Si1 原子当 n 不同时,所带的电荷并不相同,当 n 为 1,4 时带正电荷,n 为 2,3 时却带负电荷。从各个体系的最稳定构型的 HOMO 与 LUMO 的能隙可得其能隙分别为1.913~7,1.950~2,1.960~8,1.972~5~eV,因此,随着 n 的增大,相应的体系稳定性逐渐增强。相应的振动分析可得,在团簇稳定构型中,当 $n=2\sim4$ 时,均有 2 个较强的振动,其中最强的振动在 $584\sim547~cm^{-1}$ 处,为 Si1 原子的沿分子链方向的伸缩振动,在 $748\sim765~cm^{-1}$ 处为 Si2 的沿分子链方向的伸缩振动。随着 n 的增大,Si1 原子的振动强度明显增大,振动波长变长,而 Si2 原子的振动强度基本不变,波长却变短。

Table 1 Bond length, overlap population, Mulliken charge, total energy (E_T) and characteristic vibrational frequency of the most stable isomer of $[(SiS_n)S]^-(n=1-4)$

Structure	Symmetry C_{2v}	Bond length/nm		Mulliken charge		$E_{ m T}/{ m a.u.}$ *	Vibrational frequency(IR)**	
1-2		Si-S1	0.2039	Si	0.2206	-1 484.235 1	593(6.13)	Si
		Si—S2	0.2038	S1	-0.4071			
				S2	-0.4063			
2-2	C_{2v}	Si1-S1	0.206 6	Si1	-0.134 1	-2570.2346	584(314.58)	Si1
		Si1—S2	0.225 5	Si2	0.3039		748(252.68)	Si2
		Si2—S2	0.213 3	S1	-0.2704			
		Si2—S3	0.1979	S2	-0.1205			
				S3	-0.388 1			
3-1	C_{2v}	Si1-S1	0.206 4	Si1	-0.1902	-3 656.232 1	561(724.69)	Si1
		Si1—S2	0.226 0	Si2	0.3166		759(256.51)	Si2
		Si2—S2	0.210 6	Si3	-0.0659			
		Si2—S3	0.2218	S1	-0.2528			
		Si3—S3	0.211 4	S2	-0.0257			

Continued

Structure	Symmetry	Bond length/nm	Mulliken charge	$E_{ m T}/{ m a.u.}$	Vibrational frequency(IR)*

		Si3—S4	0.1969	S3	-0.0759			
				S4	-0.3517			
4-3	C_{2v}	Si1—S1	0.206 1	Si1	0.255 6	-4742.2153	547(1 042.25)	Si1
		Si1—S2	0.226 4	Si2	0.297 4		765(253.62)	Si2
		Si2—S2	0.2104	Si3	0.260 7			
		Si2—S3	0.221 9	Si4	0.347 7			
		Si3—S3	0.211 9	S1	-0.3215			
		Si3—S4	0.219 9	S2	-0.235 3			
		Si4—S4	0.212 1	S3	-0.1888			
		Si4—S5	0.196 2	S4	-0.1833			
				S 5	-0.3037			

* 1 a. u. = 27. 211 eV; * * Frequency/IR intensity: frequency in cm⁻¹ and IR intensity in km/mol.

参考文献

- 1 Raghavachari K., Rohlfing C. M., J. Chem. Phys. [J], 1988, 89: 52 219—52 234
- 2 Hohl D., Jones R. O., Car R. et al.. J. Chem. Phys. [J], 1988, 89: 6 823-6 825
- Raghavachari K., Rohlfing C. M., Binkley J. S., J. Chem. Phys. [J], 1990, **93**: 5 862—5 874
- 4 Rohlfing C. M., Raghavachari K., J. Chem. Phys. [J], 1992, 96: 2114-2117
- 5 WANG Su-Fan(王素凡), FENG Ji-Kang(封继康), CUI Meng(崔 勐) et al.. Chem. J. Chinese Universities(高等学校化学学报)[J], 2000, 21(2): 255—259
- 6 WANG Su-Fan(王素凡), FENG Ji-Kang(封继康), LIU Jian-Jun(刘建军) et al.. Chem. J. Chinese Universities(高等学校化学学报)[J], 2000, 21(8): 1 273—1 277
- 7 Hay P. J., Wadt W. R., J. Chem. Phys. [J], 1985, 82: 270-283
- 8 Wadt W. R., Hay P. J., J. Chem. Phys. [J], 1985, 82: 284-298
- Hay P. J., Wadt W. R., J. Chem. Phys. [J], 1985, **82**: 299—310

Quantum Chemical Investigation of Silicon-sulfur Clusters

$$[(SiS_2)_nS]^-(n=1-4)$$

WANG SU-Fan^{1,2}, FENG Ji-Kang^{1*}, SUN Chia-Chung¹, LIU Peng², GAO Zhen², KONG Fan-Ao²
(1. State Key Laboratory of Theoretical and Computational Chemistry,

Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;

2. State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China)

Abstract The possible geometrical structures and relative stability of silicon-sulfur clusters $[(SiS_2)_n S]^-$ (n=1-4) are explored by means of density functional theory (DFT) quantum chemical calculations (B3LYP/6-31 + G^*). The effects of polarization functions and electron correlation are included in these calculations. The electronic structure and vibrational spectrum of the most stable geometrical structure of $[(SiS_2)_n S]^-$ are analyzed by the same method. As the result, the regularity of the $[(SiS_2)_n S]^-$ cluster growing is obtained, and the calculation can be used to predict the mechanism of the $[(SiS_2)_n S]^-$ cluster forming.

Keywords Silicon-sulfur clusters; Geometry; Electronic structure; Vibrational spectrum

(Ed.:I,X)