第16卷第3期	分	子	科	学	荢	报	Vol. 16 No. 3
2000年9月	JOURNAL	OF	MOI	LECU	JLAI	R SCIENCE	September 2000

[文章编号]1000-9035(2000)03-0129-07

硅硫二元团簇[(SiS₂)_nSiS]⁺($n = 1 \sim 3$) 的结构和稳定性的量子化学研究

王素凡^{1,2},封继康¹,孙家钟¹,刘 鹏²,高 振²,孔繁敖² (1.吉林大学理论化学研究所理论化学计算国家重点实验室,吉林 长春 130023; 2.中国科学院化学研究所分子反应动力学国家重点实验室,北京 100080)

[摘 要] 用密度泛函(DFT)方法(B3LYP/6-31G*)研究了硅硫团集 [(SiS₂)_nSiS]⁺(n=1~3)的可能几何构型,得到各稳定构型的电子结构,并计算 了相应的振动频率,预测了稳定构型的振动光谱.由其稳定构型的比较可在理论 上预测团集的生长规律,并可初步预测团集的形成机理.
[关键词] 硅硫团集;几何构型;电子结构;振动光谱
[中图分类号] O641.12 [文献标识码] A

随着对团簇研究的不断深入,新的团簇不断合成,对团簇的理论研究就变得越来越重要.尤其是硅、硫团簇以及含有硅、硫元素的二元非金属团簇的理论研究已成为广大科学工作者研究的热点.特别是随着计算机技术的发展和理论化学的日趋成熟,各种理论研究 越来越深入,有关的理论计算为实验提供了非常有价值的理论指导^[1~4].最近作者用直接激光溅射含有硅和硫的混合物粉末样品,得到了含有硅、硫的二元团簇离子,用串极飞

行时间质谱仪对产物的组成进行分析,发现产物中有一些较稳定的团簇离子具有较强的 质谱峰,如(SiS₂)_n[±],[(SiS₂)_nS][±],[(SiS₂)_nSiS]⁺,[(SiS₂)_nSi₆]⁻,[(SiS₂)_nSi₆S]⁻等.但 是由实验只能得到各个团簇的元素组成,并不能得到各团簇的具体微观几何电子结构. 本文在此实验的基础上对团簇[(SiS₂)_nSiS]⁺进行量子化学计算,并根据所得结果对团簇 构型的稳定性和形成规律进行了理论探讨.

1 理论方法

在 O200 服务器上用 GAUSSIAN 94 程序进行分子轨道计算. 用含有电子相关效应的 密度泛函(DFT)中(B3LYP)方法^[5~7],在考虑了极化函数的 6-31G*水平^[8~12]上进行 [(SiS₂)_nSiS]⁺(n=1~3)几何构型优化得到相应的稳定几何构型,并在此基础上,对各种 构型在相应的水平下进行振动频率的计算,预测相应稳定构型的振动光谱.

[收稿日期] 2000-06-30 [基金項目] 国家自然科学基金資助項目(29890210)

【作者简介】 第一作者:王掌凡,女,35岁,博士;喋系人:封犍康,

2 [(SiS₂)_nSiS]⁺的稳定构型

2.1 $[(SiS_2)SiS]^+$

在 SiS⁺ 原子团结构的基础上,以增加一个 SiS₂ 分子的方式设计并优化[(SiS₂)SiS]⁺ 的几何构型(如图 1),其中以 Si,S 原子交替成键并形成环状结构较为稳定.所得的几何

图 1 [(SiS₂)SiS]⁺的几何构型

构型	对称性	化学键	r/nm	Mullike电荷	E,/a. v.	E _r /eV	E _b /eV
1	C2•	Si(1) - S(1) Si(1) - Si(2) Si(2) - S(2)	0.1992 0.2516 0.1915	Si(1) 0.305 8 Si(2) 0.393 9 S(1) 0.101 5 S(2) 0.097	- 1 773.267 0	1.733 3	14.6638
2	C ₂₇	Si—S(1) Si—S(2)	0.2158 0.1934	Si 0.482 2 S(1) -0.074 3 S(2) 0.054 9	- 1 773.279 8	1. 409 5	14.9876
3	C,	Si—Si Si—S(1) S(1)—S(2)	0.254 9 0.211 6 0.210 2	Si 0.415 9 S(1) -0.009 1 S(2) 0.186 3	-1 773.258 8	1.956.4	14.440 7
4	C27	$S_i(1) - S(1)$ $S_i(2) - S(1)$ $S_i(2) - S(2)$	0.229 1 0.206 2 0.207 2	Si(1) 0.608 5 Si(2) 0.429 2 S(1) -0.111 2 S(2) 0.184 7	-1 773.330 7	0.000 0	16.397 2
5	C ₂₇	Si—S(1) Si—S(2) S(1)—S(1)	0.216 5 0.215 1 0.209 5	Si 0.572 6 S(1) 0.010 0 S(2) -0.165 1	-1 773.311 4	0.525 2	15.7200
6	C _{2»}	Si—S(1) Si−S(2)	0.219 2 0.219 3	Si 0.447 8 S(1) 0.034 4 S(2) 0.035 6	-1 773.307 5	0.631 3	15.765 9

第3期 王素凡等:硅硫二元团簇[(SiS2),SiS]*(n=1~3)的结构和稳定性的量子化学研究 131

频,即[(SiS₂)SiS]⁺的平衡构型共有 3 种.对其平衡构型的成键方式进行分析可以得出, 构型 4 中 Si 与 S 原子交替成键形成平面四元环,与前面对[(SiS₂)_nS]⁺等构型的研究结 果相似^[13],即在环中的 S 原子与 Si 原子之间应为单键作用,而环外的 S 原子与 Si 原子为 双键作用.这样在整个构型中基本上满足了各个原子的成键要求.构型 5 中,Si,S 原子交 替成键形成五元环而使其构型中的 S 原子之间存在成键作用.构型 6 中,Si 原子分别与 3 个 S 原子成键,其中 Si 原子与 S 原子的成键作用并不完全相同.由体系的电荷分布可知 此构型的特点为 Si,S 原子间有较强的共价键作用.

2.2 $[(SiS_2)_2SiS]^+$

在[(SiS₂)SiS]⁺ 稳定构型基础上,设计并优化[(SiS₂)₂SiS]⁺ 的几何构型(如图 2 所示),构型的设计方案为在[(SiS₂)SiS]⁺ 稳定构型上增加一个 SiS₂ 单元,并且 SiS₂与 [(SiS₂)SiS]⁺之间主要以 Si,S 间的成键作用为主.构型的具体几何和性质参数列于表 2.

图 2 [(SiS₂)₂SiS]⁺的几何构型

由表 2 中的体系总能量可以得出构型 1 的能量最低,可证明其构型最稳定.在相同的计算水平上进行了相应构型的振动频率计算,由所得的振动光谱可以得出只有构型 1 的所 有振动频率为正值.从这一点可以得出[(SiS₂)₂SiS]⁺平衡构型为具有 C₂,对称性的构型,且构型的特点为 Si,S 原子交替成键形成以 S 原子为桥的四元环结构.

2.3 $[(SiS_2)_3SiS]^+$

以相同的设计方案优化了[(SiS₂)₃SiS]⁺的几何构型(如图 3 所示),其构型的主要特 征为 Si,S 原子交替成键形成不同的多元环.由相应的优化结果(如表 3)可以得到构型 1 为最稳定构型,相应的振动频率计算进一步证明构型 1 为该体系的平衡构型.而其结构特

点为 Si 原子与 S 原子交替成键形成以 2 个 S 原子为桥的链状结构,并且 Si, S 原子所形成 的四元环面之间相互垂直.

表 2	[(SiS ₂) ₂ SiS]*的纯长、	Mulliken 电荷	、总能量 (E_t) 、相对能 (E_r) 和结合能 (E_b)
-----	---	-------------	--

		化学键	r/nm	Mullike 电荷	$E_{\tau}/a.u.$	E,/eV	$E_{\rm b}/{\rm eV}$
		Si(1)—S(1)	0.225 2	Si(1) 0.533 2	-2 859.334 0	0.000 0	32.364 4
•		Si(2) - S(1)	0.2097	Si(2) 0.162.4			
1	$C_{2_{\Psi}}$	Si(2) - S(2)	0.224 5	Si(3) 0.457 4			
		Si(3) - S(2)	0.206 3	S(1) -0.135 0			
		Si(3)—S(3)	0.206 6	S(2) -0.017 4			
				S(3) 0.151 7			
		Si(1) - S(1)	0.223 4	Si(1) 0.546 9	- 2 859.269 1	1.7660	30.598 4
~	~	$S_{i}(2) - S(1)$	0.2150	Si(2) 0.545 9			
2	C _{2v}	$S_1(2) = S_2(2)$	0.234.3	Si(3) = 0.4254			
		S(3) = S(2)	0.203 5	S(1) = 0.2277			
		3(3)-3(3)	0.197 9	S(2) = 0.1041 S(2) = 0.1452			
		S(1) - S(1)	0.200 6	S(J) 0.1432 S:(1) 0.6222	-2.950 165.0	4 500 6	77 765 9
		S(1) - S(2)	0.2090	$S_{1}(1) = 0.022.5$ $S_{2}(2) = 0.557.7$	-2 039.103 0	4.398 0	27.703 8
3	C ₁	S(2) - S(2)	0.250 1	S(2) = 0.0377 S(1) = 0.0352			
5	• <i>1</i> •	S(2) - S(3)	0.216.5	S(1) = 0.303 1 S(2) = 0.303 1			
		G(2) (())	0.210 5	S(3) = 0.2021			
		S(1) - S(1)	0.203 8	Si(1) 0.154.6	-2.859.214.4	3.254.4	29 110 0
		$S_{i}(1) - S(2)$	0.231 4	Si(2) 0.5326	2 007.214 7	5.254 4	27.110 0
4	C_{2n}	$S_{i}(2) - S(2)$	0.205 2	S(1) 0.055 4			
		$S_{i}(2) - S(3)$	0.215 9	S(2) = 0.098			
				S(3) -0.134 9			
		Si(1)—S(1)	0.2178	Si(1) 0.463 7	-2 859.232 7	2.7564	29.607 9
		$S_{i}(1) - S(2)$	0.2392	Si(2) 0.168 4			
5	C _{2*}	Si(2)—S(2)	0.221 5	S(1) -0.1122			
		Si(2)S(3)	0.208 1	S(2) -0.1096			
				S(3) 0.1178			
		Si(1) - S(1)	0.221 0	Si(1) 0.549 7	-2 859.154 7	4.878 9	27.485 5
	· ·	Si(1) - S(2)	0.259 2	Si(2) 0.546 1			
6	C_{2v}	Si(2) - S(2)	0.227 8	S(1) = 0.1812			
		Si(2) - S(3)	0.2007	S(2) = 0.2835			
		0.(1) 0(1)	0.000.0	S(3) = 0.0514	0.050.004.0	1 252 4	
		$S_{1}(1) - S_{1}(1)$	0.223 3	$S_1(1) = 0.607.9$	-2 859,284 3	1.352.4	31.101 2
-	C.	S(2) = S(1) S(2) = S(2)	0.209.5	$S_1(2) = 0.393 2$ $S_1(1) = 0.393 1$			
	C _{2v}	S(2) = S(2) S(2) = S(2)	0.214 2	S(1) = 0.2071 S(2) = 0.009.0			
		3(2)-3(3)	0.1994	S(2) = 0.0080 S(3) = 0.0080			
		s(1) - s(1)	0 104 3	Si(1) 0.346.6	-2 850 206 5	1 020 4	31 344 0
		$S_{i}(1) - S_{i}(2)$	0.218 7	Si(2) = 0.3557	2 007.270 5	1.020 4	51.544.0
8	C_{2n}	$S_{1}(2) - S(2)$	0.213 5	S(1) = 0.002.8			
-	-•	$S_{i}(2) - S(3)$	0.215 5	S(2) -0.043 1			
				S(3) 0.015 4			
		Si—S(1)	0.228 3	Si 0.370 1	-2 859.187 2	3.994 5	28.369 9
9	D_{3h}	Si—S(2)	0.2267	S(1) -0.078 3			
				S(2) 0.062 3			
		Si(1)S(1)	0.2284	Si 0.3704	- 2 859. 187 2	3.994 5	28.369 9
10	C_{3v}	Si—S(2)	0.2267	S(1) -0.078 7			
		SiS(3)	0.226 6	S(2) 0.062 3			
				S(3) 0.062 5			
	_	Si(1) - S(1)	0.216 0	Si(1) 0.322 0	-2 859.213 9	3.268 0	29.0964
11	C_{2v}	Si(1) - S(2)	0.215 1	Si(2) 0.498 5			
		Si(2) - S(2)	0.249 3	S(1) -0.040 0			
				<u>S(2) -0.0256</u>			

-

•

第3期 王素凡等:硅硫二元团簇[(SiS2)"SiS]*(n=1~3)的结构和稳定性的量子化学研究 133

图 3 [(SiS₂)₃SiS]⁺的几何构型

表3 [(SiS₂)₃SiS]⁺的鍵长、Mulliken 电荷、总能量(E_t)、相对能(E_t)和结合能(E_b)

构型	对称性	化学键	r/nm	Mullike电荷	E,/a.u.	E _t /eV	E _b /eV
		Si(1)—S(1)	0.225 9	Si(1) 0.544 9	-3 945.323 3	0.000 0	47.950 7
		Si(2)—S(1)	0.212 1	Si(2) 0.1797			
		Si(2)—S(2)	0.216 5	Si(3) 0.198 9			
		Si(3)—S(2)	0.2168	Si(4) 0.350 1			
1	C_{2v}	Si(3)—S(3)	0.2136	S(1) -0.096 9			
		Si(4)—S(3)	0.217 4	S(2) 0.022 3			
		Si(4)—S(4)	0. 193 4	S(3) -0.026 4			
				S(4) ~0.0717			
		Si(1)—S(1)	0.224 5	Si(1) 0.518 8	-3 945.282 3	1.1156	46.835 1
		Si(2)—S(1)	0.2107	Si(2) 0.147 4			
		Si(2)—S(2)	0.221 6	Si(3) 0.387 8			
2	C2v	Si(3)—S(2)	0.208 0	S(1) ~0.131 8			
		Si(3)—S(3)	0.213 9	S(2) -0.075 9			
		Si(3)-S(4)	0.1994	S(3) -0.080 4			
				S(4) 0.027 0			

	Si(3)S(4)	0.1938	S(3) ~0.038 7				
	Si(3)S(4)	0.1938	S(3) ~0.038 7				
	Si(3)—S(3)	0.216 3	S(2) ~0.052 1				
C_{2v}	Si(2) - S(3)	0,213.6	S(1) 0.0147				
C		0 313 6	0(1) 0.0147				
	Si(2)—S(2)	0.223 2	Si(3) 0.353 2				
	Si(1)—S(2)	0.211 3	Si(2) 0.1724				
	Si(1) - S(1)	0.215 5	Si(1) = 0.3550	- 3 945.292 0	0.835 4	47.115 5	
	C2v	Si(1)-S(1) Si(1)-S(2) Si(2)-S(2) C_{2v} Si(2)-S(3) Si(3)-S(3)	Si(1)-S(1) 0.215 5 Si(1)-S(2) 0.211 3 Si(2)-S(2) 0.223 2 C_{2v} Si(2)-S(3) 0.213 6 Si(3)-S(3) 0.216 3	Si(1) - S(1) 0.215 Si(1) 0.355 0 Si(1) - S(2) 0.211 3 Si(2) 0.172 4 Si(2) - S(2) 0.223 2 Si(3) 0.353 2 $C_{2v} Si(2) - S(3) 0.213 6 S(1) 0.014 7$ Si(3) - S(3) 0.216 3 S(2) -0.052 1	$Si(1) - S(1) = 0.215 \ Si(1) = 0.355 \ 0 = -3 \ 945.292 \ 6$ $Si(1) - S(2) = 0.211 \ 3 = Si(2) = 0.172 \ 4$ $Si(2) - S(2) = 0.223 \ 2 = Si(3) = 0.353 \ 2$ $C_{2v} = Si(2) - S(3) = 0.213 \ 6 = S(1) = 0.014 \ 7$ $Si(3) - S(3) = 0.216 \ 3 = S(2) = 0.052 \ 1$	$Si(1) - S(1) = 0.215 \ Si(1) = 0.355 \ 0 = -3.945.292 \ 6 = 0.835 \ 4$ $Si(1) - S(2) = 0.211 \ 3 = Si(2) = 0.172 \ 4$ $Si(2) - S(2) = 0.223 \ 2 = Si(3) = 0.353 \ 2$ $C_{2v} = Si(2) - S(3) = 0.213 \ 6 = S(1) = 0.014 \ 7$ $Si(3) - S(3) = 0.216 \ 3 = S(2) = 0.052 \ 1$	Si(1) - S(1) = 0.2155 Si(1) = 0.3550 = -3.945.2926 = 0.8354 = 47.1153 Si(1) - S(2) = 0.2113 Si(2) = 0.1724 Si(2) - S(2) = 0.2232 Si(3) = 0.3532 = 0.0147 Si(2) - S(3) = 0.2136 S(1) = 0.0147 Si(3) - S(3) = 0.2163 S(2) = 0.0521

3 讨论

通过对[(SiS₂)_nSiS]⁺的几何构型优化得出其稳定构型的形成规律为 Si,S 原子交替 成键形成相互垂直的四元环链状结构,由相应的振动频率计算可知所得的最稳定构型均 为该体系的平衡构型.进一步分析最稳定构型的结构特点可知该体系的形成规律为在 SiS⁺原子团的结构基础上以 Si—S 键为主要作用方式,以 SiS₂ 为基本结构单元,形成

分子科学学报

Si, S原子交替成键的四元环链.在SiS⁺原子团中,Si—S的键长为0.1904 nm,由于 SiS₂的作用,在[(SiS₂)SiS]⁺中,团簇链顶端的S原子与Si原子之间的键长为0.2072 nm,并且随着[(SiS₂)_nSiS]⁺中 n的增大而逐渐变小.但是,在整个团簇链的Si—S键 中,Si(1)—S(1)的键长最长,可以预测团簇在一定条件下的断链反应应在Si(1)与S(1) 之间发生,即团簇易失去一个Si原子,而形成近似于[(SiS₂)_nS]⁺的结构.在SiS⁺中的电 荷布居为Si原子带0.8096单位的正电荷,S原子带0.1904个单位的正电荷,Si,S之 间应为较强的极性键作用.整个团簇链的电荷分布变化为随着 n 的增加,顶端的S原子 所带电荷由0.1847变为~0.0717,而与其相连的Si原子所带的正电荷也减少,由 0.4292变为0.3501.而Si(1)的正电荷基本上有所增加,由此可以看出,随着团簇链的 增长,整个团簇的正负电荷分别向链的两端移动,可以预测团簇链的稳定性逐渐减弱. 对团簇稳定构型的红外振动光谱分析(如表4),得出Si—S间的强振动频率为704 cm⁻¹, 为Si,S原子之间的伸缩振动.在团簇[(SiS₂)_nSiS]⁺中主要有两个较强振动,一个位于 400~430 cm⁻¹,为Si(1)原子沿团簇链方向的伸缩振动,另一个位于570~790 cm⁻¹,为 Si(n)原子的伸缩振动.

团艘	构型	对称性		振动频率/cm ⁻¹	/红外强度(对称性)/(km	/mol)
				$18.78/0.26(b_1);$	113.49/0.98(b2);	$218.86/6.04(b_1);$
[(SiS ₂)SiS] ⁺		1-4	C2.	241.37/4.49(a ₁);	317.52/25.95(b ₂);	401.54/132.67(a ₁);
				440.36/2.33(a ₁);	628.09/59.32(b ₂);	672.28/111.41(a ₁)
				32.96/0.07(b ₂);	50.03/1.16(b ₁);	99.63/0.0(a ₂);
				101.64/2.49(b1);	157.16/1.47(b2);	$166.88/1.36(a_1);$
$[(SiS_2)_2SiS]^+$		2 – 1	C_{2v}	203.69/0.48(b ₁);	213.56/3.56(b ₂);	$292.24/9.55(a_1);$
				344.44/19.31(b2);	373.49/6.42(b ₁);	375.82/51.62(a ₁);
				425.98/180.06(a ₁);	447.47/3.71(a ₁);	572.25/243.00(a ₁);
				596.31/36.92(b ₂);	645.01/72.80(b ₁);	675.07/18.64(a1)
				$23.52/0.00(b_2);$	$24.79/0.00(b_1);$	47.17/0.0(a ₂);
				58.94/1.57(b ₁);	$121.63/0.0(a_2);$	$122.73/0.00(a_1);$
				128.64/3.92(b ₂);	152.79/0.27(b ₁);	158.41/0.87(b ₂);
				196.04/3.73(<i>b</i> ₁);	198.79/1.52(b ₂);	217.11/2.39(b1);
$[(SiS_2)_3SiS]^+$		3-1	C2•	$227.88/13.47(a_1);$	303.51/1.66(a1);	326.48/6.83(<i>b</i> ₂);
				355.88/147.56(a1);	398.51/6.95(a ₁);	411.12/6.32(b ₂);
				424.71/197.67(a1);	430.45/87.96(a ₁);	435.07/0.01(<i>b</i> ₁);
				497.56/1.69(<i>b</i> 1);	511.70/2.14(a ₁);	540.91/5.92(b2);
				562.10/9.89(a ₁);	608.66/81.89(b ₂);	91.01/442.76(a ₁);

表4 $[(SiS_2)_nSiS]^*(n=1\sim3)$ 量稳定构型的正则红外振动频率及红外强度

[参考文献]

- [1] Raghavachari K, Holfing C M. J Chem Phys, 1988, 89: 2 219-2 234.
- [2] Hohl D, Jones R O, Car R, et al. J Chem Phys, 1988,89:6 823~6 835.
- [3] Raghavachari K, Rohlfing C M, Binkley J S, J Chem Phys, 1990, 93:5 862~5 874.
- [4] Rohlfing C M, Raghavachari K. J Chem Phys, 1992, 96:2 114~2 117.
- [5] Hay P J, Wadt W R. J Chem Phys, 1985, 82: 270~283.
- [6] Wadt W R, Hay P J. J Chem Phys, 1985, 82: 284-298.
- [7] Hay P J, Wadt W R. J Chem Phys, 1985, 82: 299-310.
- [8] Ditchfield R, Hehre W J, Pople J A. J Chem Phys, 1971, 54:724~728.
- [9] Hehre W J, Ditchfield R, Pople J A. J Chem Phys, 1972, 56:2 257~2 261.
- [10] PC Hariharan, Pople JA. Theo Chim Acta, 1973, 28; 213~222.
- [11] Hariharan P C, Pople J A. Mol Phys, 1974, 27: 209~215.
- [12] Gordon M S. Chem Phys, 1980, 76, 163 172.
- [13] 王素凡,封继康,刘建军,等.化学学报,待发表

Quantum chemical study of silicon – sulfur binary clusters $[(SiS_2)_nSiS]^+(n=1\sim3)$

WANG Su-fan^{1,2}, FENG Ji-kang¹, SUN Jia-zhong¹,

LIU Peng², GAO Zhen², KONG Fan-ao²

(1. State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;

State Key Laboratory of Molecular Reaction Dynamic, Institute of Chemistry,

Chinese Academy of Science, Beijing 100080, China)

Abstract: The possible geometrical structures and relative stability of silicon - sulfur clusters $[(SiS_2)_n SiS]^+$ ($n = 1 \sim 3$) are explored by the means of density functional theory (DFT) quantum chemical calculations (B3LYP/6-31G*). The effects of polarization functions and electron correlation are included in these calculations. The electronic structures and vibrational spectra of the most stable geometrical structures of $[(SiS_2)_n SiS]^+$ are analyzed by the same method. As the result, the regularity of the $[(SiS_2)_nSiS]^+$ cluster growing is obtained, and the calculation may predict the mechanism of the $[(SiS_2)_n SiS]^+$ cluster forming.

Keywords: silicon - sulfur clusters; geometry; electronic structure; vibrational spectrum

